Weifeng Liu (M’12-SM’17) is currently a full Professor with the College of Information and Control Engineering, China University of Petroleum (East China), China. He received the double B.S. degree in automation and business administration and the Ph.D. degree in pattern recognition and intelligent systems from the University of Science and Technology of China, Hefei, China, in 2002 and 2007, respectively. He was a Visiting Scholar with the Centre for Quantum Computation & Intelligent Systems, Faculty of Engineering & Information Technology, University of Technology Sydney, Sydney, Australia, from 2011 to 2012. His current research interests include computer vision, pattern recognition, and machine learning. He has authored or co-authored a dozen papers in top journals and prestigious conferences including 4 ESI Highly Cited Papers and 2 ESI Hot Papers. Dr. Weifeng Liu servers as associate editor for Neural Processing Letter, co-chair for IEEE SMC technical committee on cognitive computing, and guest editor of special issue for Signal Processing. He also serves 20+ journals and 40+ conferences. [CV]

刘伟锋,博士,教授,硕士生导师,副院长,IEEE高级会员,ACM会员,CCF会员,CCF计算机视觉专委会委员。2002年6月毕业于中国科学技术大学自动化专业,获自动控制与工商管理双学士学位,2007年6月毕业于中国科学技术大学模式识别与智能系统专业,获工学博士学位,2009年12月晋升副教授,2011年9月至2012年9月在澳大利亚悉尼科技大学做访问学者,2016年12月晋升教授,2017年6月至2017年9月在澳门大学做访问博士后。主要研究方向为多视角学习、稀疏学习、流形学习等机器学习理论在多媒体信息处理、智能人机交互、情感计算、行为分析等领域中的应用。目前主持在研国家自然科学基金面上项目1项,主持完成国家自然科学基金青年基金1项,山东省自然科学基金青年基金1项。近年发表学术论文60余篇,其中4篇(第一作者3篇)论文入选ESI高被引论文,2篇入选ESI热点论文,申请国家发明专利7项(授权2项)。其学术服务包括:担任IEEE SMC协会感知计算技术委员会主席,SCI期刊《Neural Processing Letters》Associate editor,Signal Processing Guest editor,IET Computer Vision Guest editor,20余种领域内重要期刊审稿人,近年来作为分会(共同)主席、宣传主席等国际学术会议分会7次,担任国际学术会议技术委员会成员或审稿人数十余次。 [中文简历详见]


See more past news.

Professional Services:


Journal Editorial Board:

  • Associate editor for Neural Processing Letters,
  • Lead guest editor for Signal Processing (SI: Big Data Meets Multimedia Analytics, 2016)
  • Lead guest editor for Signal Processing (SI: Data Mining in Human Activity Analysis, 2017)
  • Lead guest editor for Journal of Electrical and Computer Engineering (SI: Advanced Data Representation and Learning in Multimedia Data Analysis, 2017)
  • Guest editor for Neurocomputing (SI: Advances in Data Representation and Learning for Pattern Analysis, 2017)
  • Guest editor for IET Computer Vision (SI: Visual Domain Adaptation and Generalization, 2017)

Conference/Session (Co-)Chair:

  • ICCH special session chair (Machine Learning for Health Informatics, 2012)
  • ICIMCS registration chair (2017)
  • ICMLA publicity co-chair (2012)
  • IEEE ICDM workshop co-chair (Data Mining in Human Activity Analysis, 2016)
  • IEEE SMC special session co-chair (Matrix and Tensor Analysis for Big Vision, 2013)
  • IEEE SMC special session co-chair (Matrix and Tensor Analysis for Big Vision, 2014)
  • IEEE SMC special session co-chair (Matrix and Tensor Analysis for Big Vision, 2015)
  • IEEE SMC special session co-chair (Matrix Analysis and Feature Learning for Multimedia Understanding, 2016)
  • IEEE SMC special session co-chair (Machine Learning for Vision and Healthcare, 2017)

Journal Reviewer:

  • ACM Transactions on Knowledge Discovery from Data, Cognitive Computation, Engineering Science and Technology an International Journal, IEEE Access, IEEE Intelligent Systems, IEEE Transactions on Big Data, IEEE Transactions on Computers, IEEE Transactions on Cybernetics, IEEE Transactions on Circuits and Systems for Video Technology, IEEE Transactions on Emerging topics in Computational Intelligence, IEEE Transactions on Image Processing, IEEE Transactions on Multimedia, IEEE Transactions on Neural Networks and Learning Systems, Information Science, International Journal of Multimedia Information Retrieval, Journal of Visual Communication and Image Representation, Multimedia Systems, Multimedia Tools and Applications, Neurocomputing, Neural Networks, Neural Processing Letters, Pattern Analysis and Application, Pattern Recognition, Remote Sensing, Signal Processing, The Scientific World Journal, 计算机学报.

Conference Program Committee (Reviewer):

  • AAAI(2017), ACPR(2017), ASONAM-IT(2017), BICS(2016), BIDMA(2016-2017), CCC(2010, 2013), CCCV(2017), CCDC(2017), CIAC(2013), CYBCONF(2017), FAB(2015-2017), ICCT(2015), ICIE(2011), ICIMCS(2014-2016), ICIST(2014), ICME(2014-2017), ICMLA(2012), ICONIP(2016-2017), ICSPAC(2014), ICTAI(2013-2015), IJCAI(2017), MMM(2015), MOD(2015-2017), PCM(2015-2017), VECTaR(2014).

Selected Publications:

  1. T.-S.Chua,X.He,W. Liu, M.Piccardi, Y.Wen,D. Tao,“Big Data Meets Multimedia Analytics”, Signal Processing, 124: 1-4, 2016. (Editorial)
  2. W. Liu, Z. Zha, Y. Wang, K. Lu, and D. Tao, “p-Laplacian Regularized Sparse Coding for Human Activity Recognition,” IEEE Trans. on Industrial Electronics, 63(8): 5120-5129, 2016.
  3. Y. Guo, L. Li, W. Liu, J. Cheng, D. Tao, “Multiview Cauchy Estimator Feature Embedding for Depth and Inertial Sensor-Based Human Action Recognition”, IEEE Trans. on Systems, Man, and Cybernetics: Systems, 47(4): 617-627, 2017.
  4. W. Liu and D. Tao, “Multiview Hessian Regularization for Image Annotation,” IEEE Trans. on Image Processing, 22: 2676-2687, 2013. (ESI Hot Papers, ESI Highly Cited Papers)
  5. D. Tao, L. Jin, W. Liu, and X. Li, “Hessian Regularized Support Vector Machines for Mobile Image Annotation on the Cloud”. IEEE Trans. on Multimedia, 15(4): 833-844, 2013. (ESI Highly Cited Papers)
  6. W. Liu, X. Yang, D. Tao, J. Cheng, and Y. Tang, “Multiview dimension reduction via Hessian multiset canonical correlations,” Information Fusion, 41: 119-128, 2018.
  7. X. Yang, W. Liu, D. Tao, J. Cheng, “Canonical Correlation Analysis Networks for Two-view Image Recognition”, Information Sciences, 385-386: 338-352, 2017.
  8. W. Liu, D. Tao, J. Cheng, and Y. Tang, “Multiview Hessian Discriminative Sparse Coding for Image Annotation,” Computer Vision and Image Understanding, 118: 50-60, 2014. (ESI Highly Cited Papers)
  9. W.Liu, H.Liu, D.Tao, Y.Wang, K.Lu, “Multiview Hessian regularized logistic regression for action recognition”,Signal Processing, 110: 101-107, 2015. (ESI Hot Papers)
  10. W.Liu, T.Ma, Q.Xie, D.Tao, and J. Cheng, “LMAE: A Large Margin Auto-Encoders for Classification”, Signal Processing, 141: 137-143, 2017.
  11. W. Liu, Z. Zhang, S. Li, and D. Tao, “Road Detection by Using a Generalized Hough Transform,” Remote Sensing, 9(6): 590, 2017.
  12. W. Liu, L. Zhang, D. Tao, and J. Cheng, “Reinforcement Online Learning for Emotion Prediction by Using Physiological Signals”, Pattern Recognition Letters, 10.1016/j.patrec.2017.06.004
  13. W. Liu, L. Zhang, D. Tao, and J. Cheng, “ Support Vector Machine Active Learning by Hessian Regularization,” Journal of Visual Communication and Image Representation, 49: 47-56, 2017.
  14. X. Yang, W. Liu, D. Tao, J. Cheng, and S. Li, “Multiview Canonical Correlation Analysis Networks for Remote Sensing Image Recognition,” IEEE Geoscience and Remote Sensing Letters, 14(10): 1855-1859, 2017.
  15. W. Liu, Z. Zhang, X. Chen, S. Li, and Y. Zhou, “Dictionary Learning Based Hough Transform for Road Detection in Multispectral Image,” IEEE Geoscience and Remote Sensing Letters, 14(12): 2330-2334, 2017.
  16. W. Liu, H. Liu, and D. Tao, “Hessian regularization by patch alignment framework,” Neurocomputing, 204: 183-188, 2016.
  17. W. Liu, T. Ma, D. Tao, J. You, “HSAE: A Hessian Regularized Sparse Auto-Encoders”, Neurocomputing, 187: 59-65, 2016.
  18. W. Liu, H. Liu, D.T ao, Y. Wang, K.Lu, “Manifold regularized kernel logistic regression for web image annotation”,Neurocomputing, 172: 3-8, 2016.
  19. W. Liu, Y. Li, D. Tao, and Y. Wang, “A general framework for co-training and its applications,” Neurocomputing, 167: 112-121, 2015.
  20. W.Liu, Y.Li, X.Lin, D.Tao, Y.Wang, “Hessian regularized co-training for social activity recognition”, PLOS ONE, 9: e108474, 2014.
  21. W.Liu, H.Zhang, D.Tao, Y.Wang, K.Lu, “Large-Scale Paralleled Sparse Principal Component Analysis”, Multimedia Tools and Applications, 75(3): 1481-1493, 2016. (ESI Highly Cited Papers)
  22. X. Ma, D. Tao, and W. Liu*, “Effective human action recognition by combining manifold regularization and pairwise constraints,” Multimedia Tools and Applications, 10.1007/s11042-017-5172-1.
  23. D. Tao, X. Yang, W. Liu, S. Sun, Y. Guo, Y. Yu, J. Pang, “Cauchy Estimator Discriminant Learning for RGB-D Sensor-based Scene Classification”, Multimedia Tools and Applications, 76(3): 4471-4489, 2017.
  24. H. Liu, W. Liu and Y. Wang, “Multi-view Face Analysis Based on Gabor Features,” Journal of Information and Computational Science, 11(13): 4637–4644, 2014.

See Weifeng Liu’s Google Scholar for the full publications.